If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2-20Y+4
We move all terms to the left:
-(4Y^2-20Y+4)=0
We get rid of parentheses
-4Y^2+20Y-4=0
a = -4; b = 20; c = -4;
Δ = b2-4ac
Δ = 202-4·(-4)·(-4)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{21}}{2*-4}=\frac{-20-4\sqrt{21}}{-8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{21}}{2*-4}=\frac{-20+4\sqrt{21}}{-8} $
| -4.5=-2x-8x | | 14t^2=2t | | 20w−19w−1=6 | | 3z+32+(z-4)=180 | | 20w−19w−1=6w= | | 3+3=x+3 | | 2x+21=9x-14 | | 58+2p+42=180 | | .6x+24=6 | | 2/5=v | | w+18+6w+1+6w+5=180 | | 14-2/3x=0 | | 5z=25;z=5 | | 9x^2+11x-2=0 | | 3w-2=6w+20 | | 5x-23=2x-5 | | x+x+386=2496 | | 34+5x=14 | | 5c^2-9c=0 | | 2(x-4)+7=-19 | | 3x+37+30+6x=180 | | 21+3y-3=13y-10-3y | | 4p=6(4p+5) | | 36=-46+m | | 4+360+3+x=85 | | (6w+13)^1/2=(8w+3)^1/2 | | Y=9xx-3 | | 8x-1=15x-36 | | 2+(3x)=-15 | | 2x(1+4)=90 | | 3.1+x=5.7 | | x+4/40=10/X+4 |